Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mol Ecol Resour ; 24(3): e13913, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38173222

RESUMO

The identification of sex-linked scaffolds and the genetic sex of individuals, i.e. their sex karyotype, is a fundamental step in population genomic studies. If sex-linked scaffolds are known, single individuals may be sexed based on read counts of next-generation sequencing data. If both sex-linked scaffolds as well as sex karyotypes are unknown, as is often the case for non-model organisms, they have to be jointly inferred. For both cases, current methods rely on arbitrary thresholds, which limits their power for low-depth data. In addition, most current methods are limited to euploid sex karyotypes (XX and XY). Here we develop BeXY, a fully Bayesian method to jointly infer the posterior probabilities for each scaffold to be autosomal, X- or Y-linked and for each individual to be any of the sex karyotypes XX, XY, X0, XXX, XXY, XYY and XXYY. If the sex-linked scaffolds are known, it also identifies autosomal trisomies and estimates the sex karyotype posterior probabilities for single individuals. As we show with downsampling experiments, BeXY has higher power than all existing methods. It accurately infers the sex karyotype of ancient human samples with as few as 20,000 reads and accurately infers sex-linked scaffolds from data sets of just a handful of samples or with highly imbalanced sex ratios, also in the case of low-quality reference assemblies. We illustrate the power of BeXY by applying it to both whole-genome shotgun and target enrichment sequencing data of ancient and modern humans, as well as several non-model organisms.


Assuntos
Genômica , Cromossomos Sexuais , Humanos , Teorema de Bayes , Cromossomos Sexuais/genética , Testes Genéticos , Cariótipo
2.
Ecol Lett ; 26(10): 1726-1739, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37515418

RESUMO

Biodiversity is diminishing at alarming rates due to multiple anthropogenic drivers. To mitigate these drivers, their impacts must be quantified accurately and comparably across drivers. To enable that, we present a generally applicable framework introducing fundamental principles of ecological impact quantification, including the quantification of interactions between multiple drivers. The framework contrasts biodiversity variables in impacted against those in unimpacted or other reference situations while accounting for their temporal dynamics through modelling. Properly accounting for temporal dynamics reduces biases in impact quantification and comparison. The framework addresses key questions around ecological impacts in global change science, namely, how to compare impacts under temporal dynamics across stressors, how to account for stressor interactions in such comparisons, and how to compare the success of management actions over time.


Assuntos
Biodiversidade , Ecossistema
3.
Curr Biol ; 33(7): R259-R261, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37040705

RESUMO

Admixture has been a major force during human evolution. Two new studies using ancient DNA now show how two key admixture events in the evolutionary history of Europeans altered their adaptive trajectories and facilitated rapid evolution.


Assuntos
Evolução Biológica , DNA Antigo , Humanos
4.
Nat Commun ; 14(1): 1080, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841810

RESUMO

Quaternary climate fluctuations drove many species to shift their geographic ranges, in turn shaping their genetic structures. Recently, it has been argued that adaptation may have accompanied species range shifts via the "sieving" of genotypes during colonisation and establishment. However, this has not been directly demonstrated, and knowledge remains limited on how different evolutionary forces, which are typically investigated separately, interacted to jointly mediate species responses to past climatic change. Here, through whole-genome re-sequencing of over 1200 individuals of the carnation Dianthus sylvestris coupled with integrated population genomic and gene-environment models, we reconstruct the past neutral and adaptive landscape of this species as it was shaped by the Quaternary glacial cycles. We show that adaptive responses emerged concomitantly with the post-glacial range shifts and expansions of this species in the last 20 thousand years. This was due to the heterogenous sieving of adaptive alleles across space and time, as populations expanded out of restrictive glacial refugia into the broader and more heterogeneous range of habitats available in the present-day inter-glacial. Our findings reveal a tightly-linked interplay of migration and adaptation under past climate-induced range shifts, which we show is key to understanding the spatial patterns of adaptive variation we see in species today.


Assuntos
Ecossistema , Variação Genética , Humanos , Alelos , Evolução Biológica , Aclimatação , Mudança Climática
5.
Biol Invasions ; 24(11): 3395-3421, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277057

RESUMO

Community science (also often referred to as citizen science) provides a unique opportunity to address questions beyond the scope of other research methods whilst simultaneously engaging communities in the scientific process. This leads to broad educational benefits, empowers people, and can increase public awareness of societally relevant issues such as the biodiversity crisis. As such, community science has become a favourable framework for researching alien species where data on the presence, absence, abundance, phenology, and impact of species is important in informing management decisions. However, uncertainties arising at different stages can limit the interpretation of data and lead to projects failing to achieve their intended outcomes. Focusing on alien species centered community science projects, we identified key research questions and the relevant uncertainties that arise during the process of developing the study design, for example, when collecting the data and during the statistical analyses. Additionally, we assessed uncertainties from a linguistic perspective, and how the communication stages among project coordinators, participants and other stakeholders can alter the way in which information may be interpreted. We discuss existing methods for reducing uncertainty and suggest further solutions to improve data reliability. Further, we make suggestions to reduce the uncertainties that emerge at each project step and provide guidance and recommendations that can be readily applied in practice. Reducing uncertainties is essential and necessary to strengthen the scientific and community outcomes of community science, which is of particular importance to ensure the success of projects aimed at detecting novel alien species and monitoring their dynamics across space and time. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-022-02858-8.

6.
Sci Rep ; 12(1): 13474, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931723

RESUMO

The aim of the study is to investigate mitochondrial diversity in Neolithic Greece and its relation to hunter-gatherers and farmers who populated the Danubian Neolithic expansion axis. We sequenced 42 mitochondrial palaeogenomes from Greece and analysed them together with European set of 328 mtDNA sequences dating from the Early to the Final Neolithic and 319 modern sequences. To test for population continuity through time in Greece, we use an original structured population continuity test that simulates DNA from different periods by explicitly considering the spatial and temporal dynamics of populations. We explore specific scenarios of the mode and tempo of the European Neolithic expansion along the Danubian axis applying spatially explicit simulations coupled with Approximate Bayesian Computation. We observe a striking genetic homogeneity for the maternal line throughout the Neolithic in Greece whereas population continuity is rejected between the Neolithic and present-day Greeks. Along the Danubian expansion axis, our best-fitting scenario supports a substantial decrease in mobility and an increasing local hunter-gatherer contribution to the gene-pool of farmers following the initial rapid Neolithic expansion. Οur original simulation approach models key demographic parameters rather than inferring them from fragmentary data leading to a better understanding of this important process in European prehistory.


Assuntos
DNA Mitocondrial , Mitocôndrias , Teorema de Bayes , DNA Antigo , DNA Mitocondrial/genética , Europa (Continente) , Genética Populacional , Grécia , História Antiga , Humanos , Mitocôndrias/genética , Dinâmica Populacional
7.
Cell ; 185(11): 1842-1859.e18, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35561686

RESUMO

The precise genetic origins of the first Neolithic farming populations in Europe and Southwest Asia, as well as the processes and the timing of their differentiation, remain largely unknown. Demogenomic modeling of high-quality ancient genomes reveals that the early farmers of Anatolia and Europe emerged from a multiphase mixing of a Southwest Asian population with a strongly bottlenecked western hunter-gatherer population after the last glacial maximum. Moreover, the ancestors of the first farmers of Europe and Anatolia went through a period of extreme genetic drift during their westward range expansion, contributing highly to their genetic distinctiveness. This modeling elucidates the demographic processes at the root of the Neolithic transition and leads to a spatial interpretation of the population history of Southwest Asia and Europe during the late Pleistocene and early Holocene.


Assuntos
Fazendeiros , Genoma , Agricultura , DNA Mitocondrial/genética , Europa (Continente) , Deriva Genética , Genômica , História Antiga , Migração Humana , Humanos
8.
BMC Ecol Evol ; 21(1): 212, 2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837943

RESUMO

BACKGROUND: Trophic shifts from one dietary niche to another have played major roles in reshaping the evolutionary trajectories of a wide range of vertebrate groups, yet their consequences for morphological disparity and species diversity differ among groups. METHODS: Here, we use phylogenetic comparative methods to examine whether the evolution of nectarivory and other trophic shifts have driven predictable evolutionary pathways in Australasian psittaculid parrots in terms of ecological traits such as body size, beak shape, and dispersal capacity. RESULTS: We found no evidence for an 'early-burst' scenario of lineage or morphological diversification. The best-fitting models indicate that trait evolution in this group is characterized by abrupt phenotypic shifts (evolutionary jumps), with no sign of multiple phenotypic optima correlating with different trophic strategies. Thus, our results point to the existence of weak directional selection and suggest that lineages may be evolving randomly or slowly toward adaptive peaks they have not yet reached. CONCLUSIONS: This study adds to a growing body of evidence indicating that the relationship between avian morphology and feeding ecology may be more complex than usually assumed and highlights the importance of adding more flexible models to the macroevolutionary toolbox.


Assuntos
Evolução Biológica , Papagaios , Animais , Tamanho Corporal , Fenótipo , Filogenia
9.
Sci Adv ; 7(44): eabg1245, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705499

RESUMO

Studying repeated adaptation can provide insights into the mechanisms allowing species to adapt to novel environments. Here, we investigate repeated evolution driven by habitat specialization in the common bottlenose dolphin. Parapatric pelagic and coastal ecotypes of common bottlenose dolphins have repeatedly formed across the oceans. Analyzing whole genomes of 57 individuals, we find that ecotype evolution involved a complex reticulated evolutionary history. We find parallel linked selection acted upon ancient alleles in geographically distant coastal populations, which were present as standing genetic variation in the pelagic populations. Candidate loci evolving under parallel linked selection were found in ancient tracts, suggesting recurrent bouts of selection through time. Therefore, despite the constraints of small effective population size and long generation time on the efficacy of selection, repeated adaptation in long-lived social species can be driven by a combination of ecological opportunities and selection acting on ancestral standing genetic variation.

10.
Mol Ecol Resour ; 21(8): 2719-2737, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33964107

RESUMO

Adaptive genetic variation is a function of both selective and neutral forces. To accurately identify adaptive loci, it is thus critical to account for demographic history. Theory suggests that signatures of selection can be inferred using the coalescent, following the premise that genealogies of selected loci deviate from neutral expectations. Here, we build on this theory to develop an analytical framework to identify loci under selection via explicit demographic models (LSD). Under this framework, signatures of selection are inferred through deviations in demographic parameters, rather than through summary statistics directly, and demographic history is accounted for explicitly. Leveraging the property of demographic models to incorporate directionality, we show that LSD can provide information on the environment in which selection acts on a population. This can prove useful in elucidating the selective processes underlying local adaptation, by characterizing genetic trade-offs and extending the concepts of antagonistic pleiotropy and conditional neutrality from ecological theory to practical application in genomic data. We implement LSD via approximate Bayesian computation and demonstrate, via simulations, that LSD (a) has high power to identify selected loci across a large range of demographic-selection regimes, (b) outperforms commonly applied genome-scan methods under complex demographies and (c) accurately infers the directionality of selection for identified candidates. Using the same simulations, we further characterize the behaviour of isolation-with-migration models conducive to the study of local adaptation under regimes of selection. Finally, we demonstrate an application of LSD by detecting loci and characterizing genetic trade-offs underlying flower colour in Antirrhinum majus.


Assuntos
Genoma , Seleção Genética , Adaptação Fisiológica , Teorema de Bayes , Demografia , Genética Populacional , Modelos Genéticos
11.
Genetics ; 216(4): 1205-1215, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067324

RESUMO

Allele frequencies vary across populations and loci, even in the presence of migration. While most differences may be due to genetic drift, divergent selection will further increase differentiation at some loci. Identifying those is key in studying local adaptation, but remains statistically challenging. A particularly elegant way to describe allele frequency differences among populations connected by migration is the F-model, which measures differences in allele frequencies by population specific FST coefficients. This model readily accounts for multiple evolutionary forces by partitioning FST coefficients into locus- and population-specific components reflecting selection and drift, respectively. Here we present an extension of this model to linked loci by means of a hidden Markov model (HMM), which characterizes the effect of selection on linked markers through correlations in the locus specific component along the genome. Using extensive simulations, we show that the statistical power of our method is up to twofold higher than that of previous implementations that assume sites to be independent. We finally evidence selection in the human genome by applying our method to data from the Human Genome Diversity Project (HGDP).


Assuntos
Frequência do Gene , Ligação Genética , Modelos Genéticos , Seleção Genética , Evolução Molecular , Loci Gênicos , Genética Populacional/métodos , Genoma Humano , Genômica/métodos , Migração Humana , Humanos
12.
Curr Biol ; 30(21): 4307-4315.e13, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32888485

RESUMO

Lactase persistence (LP), the continued expression of lactase into adulthood, is the most strongly selected single gene trait over the last 10,000 years in multiple human populations. It has been posited that the primary allele causing LP among Eurasians, rs4988235-A [1], only rose to appreciable frequencies during the Bronze and Iron Ages [2, 3], long after humans started consuming milk from domesticated animals. This rapid rise has been attributed to an influx of people from the Pontic-Caspian steppe that began around 5,000 years ago [4, 5]. We investigate the spatiotemporal spread of LP through an analysis of 14 warriors from the Tollense Bronze Age battlefield in northern Germany (∼3,200 before present, BP), the oldest large-scale conflict site north of the Alps. Genetic data indicate that these individuals represent a single unstructured Central/Northern European population. We complemented these data with genotypes of 18 individuals from the Bronze Age site Mokrin in Serbia (∼4,100 to ∼3,700 BP) and 37 individuals from Eastern Europe and the Pontic-Caspian Steppe region, predating both Bronze Age sites (∼5,980 to ∼3,980 BP). We infer low LP in all three regions, i.e., in northern Germany and South-eastern and Eastern Europe, suggesting that the surge of rs4988235 in Central and Northern Europe was unlikely caused by Steppe expansions. We estimate a selection coefficient of 0.06 and conclude that the selection was ongoing in various parts of Europe over the last 3,000 years.


Assuntos
DNA Antigo , Lactase/genética , Seleção Genética , População Branca/genética , Adulto , Restos Mortais , DNA Mitocondrial/genética , Europa (Continente) , Feminino , Frequência do Gene , Humanos , Masculino , Adulto Jovem
13.
Evol Lett ; 4(2): 94-108, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32313686

RESUMO

Evolutionary processes, including selection, can be indirectly inferred based on patterns of genomic variation among contemporary populations or species. However, this often requires unrealistic assumptions of ancestral demography and selective regimes. Sequencing ancient DNA from temporally spaced samples can inform about past selection processes, as time series data allow direct quantification of population parameters collected before, during, and after genetic changes driven by selection. In this Comment and Opinion, we advocate for the inclusion of temporal sampling and the generation of paleogenomic datasets in evolutionary biology, and highlight some of the recent advances that have yet to be broadly applied by evolutionary biologists. In doing so, we consider the expected signatures of balancing, purifying, and positive selection in time series data, and detail how this can advance our understanding of the chronology and tempo of genomic change driven by selection. However, we also recognize the limitations of such data, which can suffer from postmortem damage, fragmentation, low coverage, and typically low sample size. We therefore highlight the many assumptions and considerations associated with analyzing paleogenomic data and the assumptions associated with analytical methods.

14.
Mol Ecol Resour ; 20(4): 856-870, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32142201

RESUMO

In non-model organisms, evolutionary questions are frequently addressed using reduced representation sequencing techniques due to their low cost, ease of use, and because they do not require genomic resources such as a reference genome. However, evidence is accumulating that such techniques may be affected by specific biases, questioning the accuracy of obtained genotypes, and as a consequence, their usefulness in evolutionary studies. Here, we introduce three strategies to estimate genotyping error rates from such data: through the comparison to high quality genotypes obtained with a different technique, from individual replicates, or from a population sample when assuming Hardy-Weinberg equilibrium. Applying these strategies to data obtained with Restriction site Associated DNA sequencing (RAD-seq), arguably the most popular reduced representation sequencing technique, revealed per-allele genotyping error rates that were much higher than sequencing error rates, particularly at heterozygous sites that were wrongly inferred as homozygous. As we exemplify through the inference of genome-wide and local ancestry of well characterized hybrids of two Eurasian poplar (Populus) species, such high error rates may lead to wrong biological conclusions. By properly accounting for these error rates in downstream analyses, either by incorporating genotyping errors directly or by recalibrating genotype likelihoods, we were nevertheless able to use the RAD-seq data to support biologically meaningful and robust inferences of ancestry among Populus hybrids. Based on these findings, we strongly recommend carefully assessing genotyping error rates in reduced representation sequencing experiments, and to properly account for these in downstream analyses, for instance using the tools presented here.


Assuntos
Técnicas de Genotipagem/métodos , Análise de Sequência de DNA/métodos , Alelos , Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Populus/genética
15.
Plant J ; 100(1): 143-157, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31192486

RESUMO

The olive (Olea europaea L. subsp. europaea) is one of the oldest and most socio-economically important cultivated perennial crop in the Mediterranean region. Yet, its origins are still under debate and the genetic bases of the phenotypic changes associated with its domestication are unknown. We generated RNA-sequencing data for 68 wild and cultivated olive trees to study the genetic diversity and structure both at the transcription and sequence levels. To localize putative genes or expression pathways targeted by artificial selection during domestication, we employed a two-step approach in which we identified differentially expressed genes and screened the transcriptome for signatures of selection. Our analyses support a major domestication event in the eastern part of the Mediterranean basin followed by dispersion towards the West and subsequent admixture with western wild olives. While we found large changes in gene expression when comparing cultivated and wild olives, we found no major signature of selection on coding variants and weak signals primarily affected transcription factors. Our results indicated that the domestication of olives resulted in only moderate genomic consequences and that the domestication syndrome is mainly related to changes in gene expression, consistent with its evolutionary history and life history traits.


Assuntos
Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta/genética , Genômica/métodos , Olea/genética , Transcriptoma/genética , Domesticação , Evolução Molecular , Região do Mediterrâneo , Olea/classificação , Seleção Genética , Análise de Sequência de RNA/métodos , Especificidade da Espécie
16.
New Phytol ; 223(4): 2076-2089, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31104343

RESUMO

The genomic architecture of functionally important traits is key to understanding the maintenance of reproductive barriers and trait differences when divergent populations or species hybridize. We conducted a genome-wide association study (GWAS) to study trait architecture in natural hybrids of two ecologically divergent Populus species. We genotyped 472 seedlings from a natural hybrid zone of Populus alba and Populus tremula for genome-wide markers from reduced representation sequencing, phenotyped the plants in common gardens for 46 phytochemical (phenylpropanoid), morphological and growth traits, and used a Bayesian polygenic model for mapping. We detected three classes of genomic architectures: traits with finite, detectable associations of genetic loci with phenotypic variation in addition to highly polygenic heritability; traits with indications for polygenic heritability only; and traits with no detectable heritability. For the first class, we identified genome regions with plausible candidate genes for phenylpropanoid biosynthesis or its regulation, including MYB transcription factors and glycosyl transferases. GWAS in natural, recombinant hybrids represent a promising step towards resolving the genomic architecture of phenotypic traits in long-lived species. This facilitates the fine-mapping and subsequent functional characterization of genes and networks causing differences in hybrid performance and fitness.


Assuntos
Mapeamento Cromossômico , Genoma de Planta , Hibridização Genética , Compostos Fitoquímicos/metabolismo , Populus/crescimento & desenvolvimento , Populus/genética , Característica Quantitativa Herdável , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação/genética , Fenótipo , Populus/anatomia & histologia , Probabilidade , Especificidade da Espécie
17.
Science ; 360(6392): 1024-1027, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853687

RESUMO

Little is known regarding the first people to enter the Americas and their genetic legacy. Genomic analysis of the oldest human remains from the Americas showed a direct relationship between a Clovis-related ancestral population and all modern Central and South Americans as well as a deep split separating them from North Americans in Canada. We present 91 ancient human genomes from California and Southwestern Ontario and demonstrate the existence of two distinct ancestries in North America, which possibly split south of the ice sheets. A contribution from both of these ancestral populations is found in all modern Central and South Americans. The proportions of these two ancestries in ancient and modern populations are consistent with a coastal dispersal and multiple admixture events.


Assuntos
Evolução Biológica , Emigração e Imigração , Genoma Humano , População/genética , California , Humanos , Ontário
18.
Proc Natl Acad Sci U S A ; 115(13): 3494-3499, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531040

RESUMO

Modern European genetic structure demonstrates strong correlations with geography, while genetic analysis of prehistoric humans has indicated at least two major waves of immigration from outside the continent during periods of cultural change. However, population-level genome data that could shed light on the demographic processes occurring during the intervening periods have been absent. Therefore, we generated genomic data from 41 individuals dating mostly to the late 5th/early 6th century AD from present-day Bavaria in southern Germany, including 11 whole genomes (mean depth 5.56×). In addition we developed a capture array to sequence neutral regions spanning a total of 5 Mb and 486 functional polymorphic sites to high depth (mean 72×) in all individuals. Our data indicate that while men generally had ancestry that closely resembles modern northern and central Europeans, women exhibit a very high genetic heterogeneity; this includes signals of genetic ancestry ranging from western Europe to East Asia. Particularly striking are women with artificial skull deformations; the analysis of their collective genetic ancestry suggests an origin in southeastern Europe. In addition, functional variants indicate that they also differed in visible characteristics. This example of female-biased migration indicates that complex demographic processes during the Early Medieval period may have contributed in an unexpected way to shape the modern European genetic landscape. Examination of the panel of functional loci also revealed that many alleles associated with recent positive selection were already at modern-like frequencies in European populations ∼1,500 years ago.


Assuntos
Genética Populacional , Genoma Humano , Genômica/métodos , Migração Humana , Crânio/metabolismo , População Branca/genética , Arqueologia , DNA Antigo , Feminino , Variação Genética , Alemanha , Haplótipos , História Medieval , Humanos , Fenótipo , Crânio/anatomia & histologia , Sequenciamento Completo do Genoma
19.
Curr Biol ; 27(14): 2211-2218.e8, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28712568

RESUMO

For many crops, wild relatives constitute an extraordinary resource for cultivar improvement [1, 2] and also help to better understand the history of their domestication [3]. However, the wild ancestor species of several perennial crops have not yet been identified. Perennial crops generally present a weak domestication syndrome allowing cultivated individuals to establish feral populations difficult to distinguish from truly wild populations, and there is frequently ongoing gene flow between wild relatives and the crop that might erode most genetic differences [4]. Here we report the discovery of populations of the wild ancestor species of the date palm (Phoenix dactylifera L.), one of the oldest and most important cultivated fruit plants in hot and arid regions of the Old World. We discovered these wild individuals in remote and isolated mountainous locations of Oman. They are genetically more diverse than and distinct from a representative sample of Middle Eastern cultivated date palms and exhibit rounded seed shapes resembling those of a close sister species and archeological samples, but not modern cultivars. Whole-genome sequencing of several wild and cultivated individuals revealed a complex domestication history involving the contribution of at least two wild sources to African cultivated date palms. The discovery of wild date palms offers a unique chance to further elucidate the history of this iconic crop that has constituted the cornerstone of traditional oasis polyculture systems for several thousand years [5].


Assuntos
Domesticação , Phoeniceae/anatomia & histologia , Phoeniceae/genética , Omã
20.
Syst Biol ; 66(6): 950-963, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28204787

RESUMO

Although it is now widely accepted that the rate of phenotypic evolution may not necessarily be constant across large phylogenies, the frequency and phylogenetic position of periods of rapid evolution remain unclear. In his highly influential view of evolution, G. G. Simpson supposed that such evolutionary jumps occur when organisms transition into so-called new adaptive zones, for instance after dispersal into a new geographic area, after rapid climatic changes, or following the appearance of an evolutionary novelty. Only recently, large, accurate and well calibrated phylogenies have become available that allow testing this hypothesis directly, yet inferring evolutionary jumps remains computationally very challenging. Here, we develop a computationally highly efficient algorithm to accurately infer the rate and strength of evolutionary jumps as well as their phylogenetic location. Following previous work we model evolutionary jumps as a compound process, but introduce a novel approach to sample jump configurations that does not require matrix inversions and thus naturally scales to large trees. We then make use of this development to infer evolutionary jumps in Anolis lizards and Loriinii parrots where we find strong signal for such jumps at the basis of clades that transitioned into new adaptive zones, just as postulated by Simpson's hypothesis. [evolutionary jump; Lévy process; phenotypic evolution; punctuated equilibrium; quantitative traits.


Assuntos
Classificação/métodos , Modelos Genéticos , Filogenia , Algoritmos , Animais , Evolução Biológica , Lagartos/classificação , Papagaios/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA